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Abstract—When optimizing for energy in a modern computing
system, it is critical to understand the primary source of energy
usage: the memory system. Performing effective optimization in a
traditional memory system requires knowing something about the
complex and subtle behavior of dynamic random access memory
(DRAM). This includes understanding DRAM chip organization
and functionality, the organization of chips and data on a dual in-
line memory module (DIMM), the structure of modern packaging
options, and the behavior of the memory controller.

In this position paper we describe some background of DRAM
chip and system organization with some specific examples of
how this knowledge can be used to enhance system behavior. We
then give some examples of how understanding accurate DRAM
behavior can influence energy and latency, and describe a detailed
DRAM simulator (USIMM) that can be used to add high-fidelity
DRAM models to system simulations. We use graphics hardware
as a motivating example of a system that is both heavily reliant
on the memory system, and that also has interesting latitude in
terms of how the application accesses memory.

I. INTRODUCTION

For memory-bound applications where data are often not
cache-resident, optimizing for main-memory DRAM access
is critical for improving both speed and power performance.
However, the details of how DRAM memory works, and the
quirks associated with the low-level details of the DRAM
chips, are often not well understood by application program-
mers. In this position paper we will expose some of the
secrets of DRAM functionality by describing the internal
structure of modern DRAM and how programmer knowledge
of that structure can have a dramatic impact on application
performance both in improved speed, and in decreased power
consumption.

The dramatic difference in speed and power of a DRAM
access vs. an on-chip memory access (e.g. cache) means that
even small changes in main-memory traffic and behavior can
have a large impact on system performance. For example,
many studies attribute 25-40% of total power consumed in
a datacenter to the DRAM system (e.g. [1], [2]). To give
just one example, a proposed hardware architecture for ray
tracing with cache hit rate percentages in the 90% range still
shows almost 60% of the power consumed in the DRAM [3].
However, optimizing for main memory performance requires
knowing something about the complex and subtle behavior
of DRAM memory. This includes understanding DRAM chip
organization and functionality, the organization of chips and

data on a DIMM, the structure of cutting-edge advanced
packaging options, and the behavior of the memory controller.

In this paper we describe some background of DRAM
chip and system organization. We then motivate, with some
examples, how much difference DRAM optimization can
make, and describe a detailed DRAM simulator (USIMM)
that can be used to add high-fidelity DRAM models to system
simulations [4], [5]. We conclude with some thoughts on the
importance of including high-fidelity DRAM simulation in any
architectural exploration.

II. BACKGROUND

A typical memory system for a modern general purpose
computer consists of a variety of storage devices that give
the illusion of uniform very large, very fast memory to the
programmer or compiler. This consists of a hierarchy of
different types of memory that have more capacity, but that
become slower as the circuits become further away from the
functional units in the CPU. This type of general memory
hierarchy is well-known to computer architects (e.g. [6], [7])
but we give a brief overview for completeness.

Directly connected to the CPU functional units are the
registers. From the point of view of the assembly code, the
registers are typically seen as loaded directly from the main
memory. In practice, there is a rich hierarchy of different
memory types between the registers and the long term storage
of the computing system. Memory accesses involve automatic
fetching of required data from one level of the hierarchy to
another on demand by the memory system hardware.

Closest to the registers is typically a cache memory. The
cache is implemented using static random access memory
(SRAM) circuits that are denser than the register file flip
flops, but still constructed of active feedback circuits so that
as long as the power is applied, the data remains in the
memory. Caches exploit both temporal and spatial coherence
in data access by caching copies of data from higher levels
of memory into their smaller, but faster circuits. Register data
items are served from the cache. If the data are not found
in the cache they will be retrieved from the next level of
the hierarchy automatically by the memory system, possibly
displacing existing data in the cache. In a modern system there
may be multiple levels of caching, each level consisting of
larger capacity, but slower access times. Caches are always
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implemented using relatively fast SRAM and are typically
integrated onto the same die as the processor.

Caches are backed up by “main memory.” This memory
is usually off-chip from the CPU and implemented using
dynamic random access memory (DRAM) chips. DRAM is
used only because of its high capacity and low cost. As will
be described in the following section, DRAM is dynamic in
two senses: it loses the data stored in a short amount of time
(which requires periodic refreshing of the data) and even reads
to DRAM are destructive to the contents of the memory (which
requires write-back on every read). DRAMs have evolved to be
optimized for refilling cache lines. This means that the access
protocols are optimized for burst reads of contiguous data that
matches a typical cache line refill request (e.g. 64B for many
X86-based CPUs).

DRAM can be seen both as holding working-set data for the
application, and also as a page-cache for operating system data
pages stored on more permanent, even higher-capacity devices
such as disks and solid-state memory. In the same way that
DRAM access is optimized for cache-line-sized streams, disks
and disk-equivalents are optimized for streaming page-sized
chunks of data (typically 4kB on a standard linux OS).

While the memory system is typically designed to be
transparent to the programmer (or compiler), it is well-known
that considering data layouts and algorithms to match the
properties of the memory system is a powerful optimiza-
tion technique [8]–[10]. It is exactly these sorts of high-
performance optimizations that we consider here, and argue
that if a full system simulation is being used to explore a
new architecture, that without high-fidelity simulation of the
DRAM portion of the system, the accuracy of the simulation
results is highly questionable.

III. DRAM ORGANIZATION AND BEHAVIOR

DRAM is the memory of choice for most main memory
systems. This is primarily because of the high capacity of
modern DRAM chips, and the low cost per bit. These are
really the only redeeming features of DRAM. Although com-
modity DRAM chips have evolved to meet well-understood
standards [11], they are subtle and complex to use, requiring
sophisticated memory controller circuits to deal with them
both at electrical and logical interfaces [6], [12]. They are also
designed primarily to refill cache lines - a feature that makes
them harder to use as general-purpose memory, but that also
allows certain features of that behavior be exploited for better
performance.

A. Circuit Organization

The fundamental bit-holding circuit of a DRAM is a storage
capacitor. Charge is deposited or drained from the capacitor
to indicate a 0 or 1 bit. Access to the capacitor is through
a write transistor. These capacitors and associated transistors
are typically implemented in a rectangular array on the chip
(Figure 1). To increase bit density, these capacitors are sized
as small as possible on the chip. This means that the stored
charge leaks into the substrate and all data must be refreshed
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Fig. 1. Simplified schematic/block diagram of a DRAM on-chip memory
array.

periodically to avoid losing information (typically every 32-
64ms for recent DRAM chips [11]).

To amortize the decoding circuitry and the pins on the
DRAM package, access is always done on entire rows at
a time. For a read, the row is selected and the bit values
are determined by the sense amplifiers. These amplifiers are
needed because the value of the bit is read by coupling the
storage capacitor to the vertical bit column resulting in a very
small change in voltage on that column.

The sensed bits are stored in an SRAM row buffer so that the
desired bits in the row can be selected from that buffer using
the column address. The row buffer is also critical because
the process of coupling the bit capacitors to the bit columns
destroys the contents of that bit cell. The entire row must be
written back after each read to restore the data in that row. This
is also how refreshes are typically done - by making sure that
every row in the DRAM array has been read at least once
during the refresh interval. Writes to DRAM involve reading
an entire row, followed by updating desired bits in the row
buffer before writing the entire row back to the array.

B. Chip Organization

On a DRAM chip there may be many DRAM arrays, defined
as banks of memory on the chip. This is required because of
physical limits to the size of the DRAM bit arrays and the
sensitivity of the amplifiers used to determine bit values. As
an example, Figure 2 is taken from the data sheet of a DRAM
chip sold by Micron [12]. This chip is not high-capacity by
modern standards, but makes it easier to see the on-chip
features in the block diagram. This example chip uses the
double data rate 3 (DDR3) JEDEC standard [11] and contains
1Gb of total storage. That 1Gb is organized as 128M×8b -
the external data interface to the chip is eight bits wide.

As seen in the block diagram, there are eight banks of
DRAM on the chip, each with 128Mb capacity. These banks
are implemented as 64 copies of a 16k×128 basic memory



array (called a “matrix” or “mat”). This means that for each
row access to a bank, 128×64 = 8kb of data are sensed
and transferred to that bank’s row buffer. From that bank’s
row buffer, 64b are transferred to the chip’s output FIFO for
delivery to the external pins of the chip 8 bits at a time.
A typical burst read will consist of eight transfers per burst,
transferring all 64b from the output FIFO to the chip pins in
four clock cycles (double data rate chips transfer data on both
rising and falling edges of the clock). Even this description
hides a great deal of the complexity of DRAM chip access. A
modern DRAM chip has around 50 different timing parameters
that must be considered when accessing the chip [12].

From the point of view of memory optimization, the row
buffer can be a critical feature. Reading from the banks into the
row buffer is the slowest operation on the DRAM, requiring
a precharge of the bit columns, applying the row address,
sensing the data, capturing the data into the row buffer,
applying the column address, and transferring the selected bits
from the row buffer to the chip outputs (with the writeback to
the bank row happening concurrently). If the next data access
is to data already in the row buffer (a so-called open-row
access), then latency and energy are dramatically reduced for
that access. It is also worth noting that this example has eight
banks on the chip each with an 8kb row buffer, so there are
eight separate row buffers to be managed for possible open-
row access optimization.

C. DIMM Organization

DRAM chips in most computer memory systems are not
used alone - they are assembled onto small circuit boards in a
package known as a dual inline memory module (DIMM) to
increase capacity (Figure 3). Using our previous chip example
in Figure 2, if eight of these chips are used on a DIMM, and
the memory access is spread across all eight chips, then the
DIMM delivers 8×8b = 64b of data on each access. Since the
chips are designed for burst access, a burst of eight accesses
will result in a cache-line-sized chunk of 512b of data being
transferred from DRAM to the cache.

From the point of view of a DIMM memory access, the bank
of memory delivering the data is spread across all the chips
on the DIMM. Using these example DRAM chips there would
be eight banks implemented on the DIMM. The memory
controller keeps track of the status of all the banks so that it
can attempt to optimize access to those banks (using read and
write coelescing through data queues residing in the memory
controller, for example). The primary optimization is for open-
row access, although there are other more subtle optimizations
also possible.

Note that although Figure 3 shows all eight chips being used
in each logical bank on the DIMM, it is also possible to use
DRAM chips that, for example, have wider data interfaces
and use fewer chips for each bank access. In this case,
the additional chips could constitute another partitioning of
memory, called a rank. Using chips with a 16b interface, for
example, and eight chips on a DIMM, there could be two ranks
on the DIMM, only one of which would be active on each

memory cycle. Using multiple ranks increases the number of
banks available on the DIMM, thereby increasing the number
of row buffers for a given amount of memory.

IV. HIGH-FIDELITY DRAM SIMULATION

The important message from this discussion of DRAM
memory systems is that accessing these chips is very complex,
and that depending on the nature of an individual access the
latency and power profile can be hugely different. The actual
difference depends on such a number of conditions that broad
statements are dangerous, but a system with optimized open-
row access can show upwards of 10x more efficiency in both
memory latency and energy than a system with more random
accesses to the DRAM.

Keeping track of the state of all the DRAM banks in the
memory, especially given the number of timing constraints,
is a difficult task. This falls to the memory controller. As a
programmer, one cannot usually modify the behavior of the
memory controller itself, but one can optimize data layouts
and algorithms to make life easier for the memory controller.
In the same way that a programmer might take cache layouts
into account when designing data structures, he/she might also
take DRAM idiosyncrasies into account. The row buffers are
a primary target that can be easily exploited by a programmer
or compiler.

The result of this complexity is that it is extremely difficult
to predict the “average” behavior (latency and power) of
the memory system for a given workload. The behavior is
so complex, and the interaction of different workloads has
such an impact, that any system simulation that does not
carefully model the detailed behavior of the DRAM is likely
to not capture remotely realistic performance characteristics.
In addition to the row-buffer behavior, this should include a
model of a memory controller that keeps track of the detailed
timing state of all the ranks and banks on the DIMMs, and
includes structures such as write buffers and read-request
buffers that are used to coalesce accesses.

There are a number of cycle-accurate DRAM simulators that
have been reported in the literature including DRAMsim [13]
and DRAMsim2 [14] that are primarily trace-driven, and
Ramulator [15] that can operate on traces or as an integrated
simulator with Gem5 [16]. For our example we will focus on
the the USIMM [4] simulator that can operate on traces and
also as a stand-alone event-driven DRAM simulator that can
be easily integrated into any cycle-accurate simulator using a
simple API.

V. MOTIVATING EXAMPLE:
RAY TRACING AND DRAM BEHAVIOR

In this section we will examine a motivating example in
which a cycle-accurate simulator is used to better understand
and optimize the hardware and software architecture of a
memory-bound application such as graphics rendering.
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Fig. 2. Block diagram of a commercial DRAM chip from Micron [12]. This is an example of a 1Gb DDR3 DRAM configured as 128M x 8b. The memory
arrays are configured as eight banks with each bank having an 8kb row buffer. On a read, 64b from the selected row buffer are transferred to the output FIFO
where they are streamed out eight bits at a time.

Fig. 3. Block diagram of a DIMM.

A. Ray Tracing Background

Ray tracing is a technique for rendering 3D computer
graphics [17]. It is known for its ability to naturally create
photo-realistic, high quality images, but also for its high
computational cost, and the heavy load it puts on the memory
system. Due to this high quality, high cost trade off, it is
typically used for rendering movies and still images, rather
than for real-time purposes such as video games.

Ray tracing is a simulation of light transport, so the core
of the ray tracing algorithm is determining which nearest
geometric scene primitive (usually a triangle) a ray of light
intersects with. To speed up this process, almost every ray
tracer uses an acceleration structure, a data structure that
organizes the scene primitives in a way that facilitates fast
pruning of the set of geometry primitives a ray intersects.
The most popular type of acceleration structure is the bound-
ing volume hierarchy (BVH) [18], [19]. A BVH, like most
other acceleration structures, is a tree, and determining which
geometry a ray intersects involves traversing the tree in a
non-deterministic order. This traversal creates unpredictable

memory access patterns that prove difficult for caches to filter,
causing not only more accesses to DRAM, but also more
incoherent access patterns. This problem is exacerbated when
many threads are operating concurrently, as is typically the
case in “embarrassingly parallel” graphics applications such
as ray tracing.

Steady research over the past two decades has continued to
advance the cutting edge of ray tracing performance, through
both algorithmic and architectural advances. Much of this
research has focused on addressing the incoherent nature of
control flow and data access patterns caused by BVH traversal
in order to improve SIMD utilization or cache hit rates [20].
These techniques usually involve processing multiple rays
together in a group called a “packet”, with each ray in
the packet being spatially coherent (having a similar origin
and direction). Ideally, a coherent packet of rays will take
a very similar path through the BVH, since traversal order
is determined by the origin and direction of the ray. This
amortizes the cost of loading a BVH node from memory over
multiple rays.

More directly, another technique groups together rays that
are known to traverse the same subset of nodes in the BVH,
called a treelet, where treelets are designed to fit within
the cache hierarchy [21], [22]. During traversal, rays are
accumulated at treelet root nodes; when a ray crosses a treelet
boundary, it is enqueued in a buffer associated with the new
treelet. Once a critical mass of rays collects in a treelet, one
of the processors or thread-blocks is assigned to process those
rays through that treelet. Thus a processor will operate for a



prolonged period of time on only the cache-resident data for
a single treelet, greatly increasing cache hit rates.

These ray coherence techniques are designed to improve
cache hit rates, but do not necessarily address DRAM accesses.
While it is certainly true that reducing the number of DRAM
accesses by filtering them with a cache can improve DRAM
performance, carefully controlling the pattern of accesses can
have an even more dramatic effect.

B. GPU Simulation

As a case study, we examine a custom ray tracing sys-
tem called STRaTA with hardware support for treelet traver-
sal [23]. The goal of STRaTA is to reduce energy con-
sumption by reducing data movement both on and off-chip,
and is evaluated with a cycle accurate GPU simulator. This
simulator initially used a naı̈ve DRAM model, assuming a
fixed average latency and energy consumption for each access.
Not surprisingly, increased cache hit rates achieved through
using treelets translates to a corresponding decrease in DRAM
energy consumption. However, the goal of the STRaTA system
is to target data movement, so ignoring the complexities
of DRAM is likely a considerable mistake. We augmented
the GPU simulator used in STRaTA with a high fidelity
DRAM simulator called USIMM (Section VI). The results
revealed that although STRaTA was successful at reducing off-
chip memory accesses, DRAM energy consumption was not
reduced substantially. To truly address data movement energy
consumption, we must target DRAM access patterns as well
as the caches.

We note that the nature of treelet ray tracing introduces
an interesting phenomenon that data is loaded from DRAM in
bursts. When a thread-block switches to a new treelet, initially
the treelet data will not be cache-resident, and all threads will
simultaneously request loads that miss in the last level cache.
After this initial burst of cache miss accesses are fulfilled, the
thread-block will cease generating DRAM requests while it
operates on the cached treelet.

This bursty nature of accessing DRAM presents an inter-
esting opportunity: if we can map all of those accesses to
one, or a small number of DRAM rows, then those rows can
be opened once and streamed fully to the processor before
closing. This type of operation is ideal for retrieving data out
of a DRAM system. We achieve this by rearranging the BVH
tree so that all nodes in a treelet occupy a contiguous address
range that is a small multiple of the DRAM row buffer size.
Figure 4 illustrates this, where each treelet maps to exactly
two separate rows.

C. Results

The combination of restructuring the algorithm to operate
on blocks of data (treelets), and explicitly organizing those
blocks for efficient row buffer access has a drastic effect on
DRAM performance, both in terms of latency and energy
consumption. We analyze performance for twelve ray tracing
benchmarks using a baseline ray tracer and our DRAM-centric
modifications to STRaTA. Read latency is reduced by up to
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85% in the best case, and 71% on average, and DRAM energy
consumption is reduced by 24% on average, even though some
benchmarks show increased data transferred. This is all due to
an average increase in row buffer hits of more than 50% [3].

Optimizing for row buffer hits is effective not only for re-
ducing latency and energy, but also for getting high throughput
data out of DRAM. Memory system performance is often
reported in terms of peak bandwidth, but achieving that data
rate is all but impossible without carefully controlling access
patterns. The memory system can often be the bottleneck,
especially for applications with many threads demanding data.
By increasing row buffer hits, our improved STRaTA system
effectively increases DRAM throughput, allowing for scaling
to many more threads, as illustrated in Figure 5 [3]. Each
thread multiprocessor (TM) in the STRaTA system represents
a block of 32 threads. Figure 5 shows that the baseline
performance (solid lines) quickly plateaus due to memory
starvation as the number of threads increases, while STRaTA
(dashed lines) sees continued performance gains.

Identifying and rectifying these DRAM performance char-
acteristics would be impossible without an accurate DRAM
simulator. Augmenting a cycle accurate processor simulator
with a DRAM simulator provides a much more complete
picture of a full system, revealing performance bottlenecks
and opportunities in both hardware and software design.



VI. USIMM DRAM MEMORY SIMULATOR

The Utah Simulated Memory Module (USIMM) is a highly
accurate DRAM and memory controller simulator [4]. It tracks
the full state of each bank in the memory system based on well
known precise timings for the various phases of each mem-
ory access [12]. The memory controller maintains read/write
queues, and enacts a scheduling policy to determine which
accesses to issue on each cycle. Based on the access phases
and duration that each DRAM operation must go through,
USIMM tracks the power consumption of each DIMM [24].
For example, an open-row access does not activate the same
phases as a row miss.

By default, USIMM uses a realistic scheduling policy and
timing parameters, but these are customizable. This makes
USIMM a powerful tool for research and exploration of “what
if” scenarios [25]. Users can program their own scheduling
policy, e.g. to try to increase open-row accesses for a particular
application domain. Even without customization, USIMM is
an invaluable tool for augmenting existing processor simula-
tors with accurate DRAM modeling.

USIMM is driven either by memory traces or by on-demand
access events generated by another simulator. The simple API
allows for easily inserting read/write accesses on a given cycle,
triggering the memory clock, and receiving access completion
events. An existing processor simulator can simply send last
level cache misses to USIMM, and then act appropriately when
notified of the operation completion.

VII. CONCLUSIONS

The main memory system of a modern computer is highly
complex. Architectural simulations regularly use detailed sim-
ulation models of registers (with possible renaming) and
caches because the behavior of those portions of the memory
system are very dependent on the way the application uses
memory and data. What is not as common is to also use a
detailed simulation of the DRAM main memory. We argue
that this is a mistake. Even in systems with high cache hit
rates, the impact of using main memory more carefully can
be large. This is especially true for applications with large
memory requirements that cannot fit into caches.

The main culprit is DRAM. This type of memory has such
a large latency and power footprint that small changes in
the use of that memory can have large impacts on overall
system performance. Also, the underlying DRAM memory
is so internally complex that it is difficult, or impossible,
to predict in advance how the memory system will react to
a particular application. Beyond the accuracy argument, it’s
not possible for a programmer to think about optimizing an
application for the memory system if the simulation does not
properly model the memory system.

We believe that it is critical for system simulations to
use high-fidelity DRAM models, especially if they are being
designed with the goal of reducing energy. There are a variety
of high-fidelity DRAM simulators available. What is essential
is that researchers use one when exploring and reporting on
new system architectures.
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